
Acta Electrotechnica et Informatica, Vol. 15, No. 1, 2015, 15–23, DOI: 10.15546/aeei-2015-0003 15

THE WEB APPLICATION OF THE SLAMETER TOOL

Liberios Vokorokos, Ján Juhár, Adrián Pekár, Peter Fecil’ak
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics

Technical University of Košice, Letná 9, 042 00 Košice
E-mail: {liberios.vokorokos, jan.juhar, adrian.pekar, peter.fecilak}@tuke.sk

ABSTRACT
In this paper we discuss in general the role of monitoring tools in network traffic engineering and shaping; and current trends in

the development of web applications, while our main focus is aimed at the top most layer of the SLAmeter tool, i.e. the web application;
which provides the user interface for the tool. The purpose of the SLAmeter network traffic metering tool is to provide information
about various aspects of computer network traffic. Since meaningful and configurable data visualization is an indispensable tool for
achieving the goal of the monitoring; considering the shortcomings of the previous version; our main focus is aimed at the design and
implementation of a modular architecture with a thick client for this web application which serve as the basis for further extension with
modules for the evaluation of the collected data; and thus optimizing the process of network traffic monitoring and evaluation with the
SLAmeter tool.

Keywords: Web application, SLAmeter, architecture, client-side MVC, thick client, network traffic monitoring

1. INTRODUCTION

Most of the monitoring systems share almost identical
architecture and work on similar principles. Figure ?? illus-
trates a common architecture for monitoring systems. Data
collection is ensured by continuous measurement of either
(i) various data samples from the traffic or (ii) information
reflecting the actual state of the inter-networking devices.
The observed data are subsequently encapsulated into a spe-
cial data structure and stored for further use.

Data Collection

Database

Administration
Alert

Notifications

Statistics/Plots/etc.

Intervention

Fig. 1 Common architecture of network monitoring systems.

For now, let’s say, this special data structure is a met-
ric, however, other metric-like forms (e.g. flow record)
also exist. The monitoring system continuously confronts
the newly observed data with the ranges of the pre-agreed
threshold and in case of any violation it raises an alert1.
What happens next depends entirely on the implementation
details, but basically there are two options: (i) in case of au-
tomated fault resolution, the system will take on the basis
of certain computations some actions to resolve the poten-

tial or real threat or (ii) in case of manual fault resolution,
by the analysis of the plots the operator or administrator has
to draw a conclusion that should lead to a resolution. For
a clearer explanation we shall break down this process into
the following functional parts:

1. Data collection – Generally, by data collection we
mean collection of all measurable information about
the network, its components and traffic. However, in
our case we will restrict this set only to network traf-
fic properties. Collection of the data includes also
process of extracting measured data with key prop-
erties into a metric which is subsequently sent either
to a database or for further processing using a pre-
agreed protocol.

2. Data storage – The data in the metrics are grouped
and collected by their properties which basically
serve as supplement information to the measured
sample [?]. Relevant information2 are retrieved from
the metrics and summarized to yield a time se-
ries of values. Individual points of the series are
subsequently evaluated and compared to admissible
threshold range. If anomalous condition is detected,
further actions are taken based on method of fault res-
olution.

3. Visualization – Network condition visualization is an
effective way to deal with faults and errors. The eval-
uated values can be presented in many different ways
to achieve the goal of monitoring, as well as they
can be combined for maximizing the efficiency of
the fault elimination process. The most useful infor-
mation to take the accurate mitigating actions during
alerts can be obtained exactly from them. Moreover,
they also serve as reference point to check the cor-
rectness of the mitigating actions.

As we already stated, network monitoring is conditioned by
data collection. The way how the measured data are treated

1Note, that at the same time, the observed data can be used for adjusting the actual altering threshold as well.
2The relevance depends on the desired result or goals of the evaluation.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

16 The Web Application of the SLAmeter Tool

after their collection, usually depends on the requirements
and implementation of the monitoring system. The process
of transforming collected data to their visualization is most
commonly noted as data analysis. As described in [?] we
distinguish between three application areas for data analy-
sis:

• Flow analysis and reporting – is the most basic func-
tionality. It typically provides the functionalities of
(i) browsing and filtering flow data, (ii) statistics
overview and (iii) reporting and alerting.

• Anomaly detection – the gathered data may be used
for analyzing which hosts have communicated (i.e.
gathering various summaries, etc.) or for analyzing
certain types of threats (i.e. analyzing and modeling
network behavior) [?, ?, ?].

• Performance monitoring – aims at observing the sta-
tus of the running services on the network. Most
common metrics for this include Round-Trip-Time
(RTT), delay, jitter, packet loss and bandwidth us-
age. Further on, post-processing the gathered data
can show a set of metrics per target service which
can be subsequently used for the verification of
Service-Level Agreement (SLA) compliance. In ad-
dition, performance monitoring can also reveal net-
work events and their impact on end-user experience.

Since monitoring and reviewing the state of the network
are critical tasks, the interface of the monitoring tool has a
high importance for the user. It goes without saying that
any potential insights on the network behavior that could
by gained from the collected metrics – if not accessible
through the user interface – are virtually non-existent from
the user’s perspective. Thus, meaningful and configurable
data visualization is an indispensable tool for achieving the
goal of the monitoring.

In this paper we present a new modular architecture
for the web-based user interface of the SLAmeter network
monitoring tool. This architecture is built on the previous
work regarding the user interface of the SLAmeter tool,
however, it significantly enhances its usability and respon-
siveness, while it also enables the integration of data visual-
ization based on the stored (historical) as well as real-time
network metrics’ collections.

2. MOTIVATION

The SLAmeter tool [?] is aimed at metering and eval-
uation of different parameters of computer network traffic
for the purpose of determining the level of compliance with
the SLA. It uses IP Flow Information Export [?,?] protocol
for network traffic monitoring, that is focused on IP flows
(conversations) between network devices. SLAmeter is de-
veloped by the MONICA research group in the Computer
Network Laboratory of the Technical University of Košice.

As depicted in Figure ??, the SLAmeter tool consists of
the following main components:

• Exporter, that monitors the network and generates
IPFIX messages;

• Collector, for collecting IPFIX messages in a
database;

• Database, for persisting collected data;

• Evaluator, that evaluates the data, either persisted
or collected in real-time through Analyzer-Collector
Protocol.

• Web application, that provides a user interface for the
tool.

User interface in the for of a web application was cho-
sen due to the ease of access to such an application for its
users. Similar trend toward the web applications can be ob-
served for many different types of applications, as the In-
ternet is becoming more accessible and the web technolo-
gies are evolving at a rapid pace. Further, our focus will be
aimed at the web application of the SLAmeter tool.

Network

Exporter A

Network

Exporter B

Collector

Database

Evaluator

Web application

Mediator

ACP

Fig. 2 The architecture of the SLAmeter tool.

The purpose of the web application is to provide a tool
that will display the collected and evaluated data from the
lower parts of the SLAmeter in a user-friendly way that will
allow the users to understand and to interact with collected
data through configurable visualizations. Its first version
was created by the members of the MONICA group through
numerous tasks and works. The modular architecture of the
application consists of the server-side framework [?] that
contains the modules, as depicted in Figure ??. Each mod-
ule is responsible for displaying the data provided by the
corresponding module in the Evaluator. The resulting in-
terface is composed of the outputs of these modules and of
additional templates.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 1, 2015 17

input

module

asociation

communication with
other parts of the tool

Distributor

Evaluator
Database
PostgreSQL

Views

JsonClient

AC
P

fo
r

re
al

-t
im

e
m

od
ul

es

JsonISP

Web page

Module
Manager

Module 1

Module N

.

.

.

framework

output

D
B
 c

on
ne

ct
io

n
fo

r
ac

co
un

tin
g

m
od

ul
es

Web application

Fig. 3 The former architecture of the web server.

The usage of this web application showed that not all of
the requirements on the modularity, extensibility, or even
the functionality were met. There are modules created on
the server and the charts used for data visualization in the
user interface do provide some interactive features as they
are rendered in the browser with a JavaScript charting li-
brary. However, the filtering criteria by which the data are
selected and processed by the Evaluator can not be changed
from the user interface – they are hard-coded in the modules
of the web server. Moreover, these criteria do not capture
the full filtering possibilities of the Evaluator.

Further problems in the web application are caused by
the following process that creates a web page:

1. The Distributor requests filtering criteria from each
of the modules (see Figure ??).

2. The Distributor connects to the Evaluator and hands
over the collected requests.

3. The data retrieved from the Evaluator are subse-
quently distributed back to the modules.

4. The modules produce the HTML fragments, includ-
ing the JavaScript code for dynamic chart generation
in the user’s web browser.

5. These fragments are joined to form a full HTML page
that is sent as a response to the user’s original request.

The described process emphasizes (i) the need to fully
evaluate all of the modules before anything can be sent to
the browser and (ii) a strong dependency on the Evaluator
as the only possible source of the data. The former creates
a long loading time of the web pages due to the computa-
tionally intensive evaluation process. Further, it does not
allow the filtering criteria configuration to be implemented
at module level, as it would require partial page updates.
The latter already caused difficulties in the process of ex-
tending web application with new modules for accounting

and real-time metering [?]. These modules required differ-
ent data sources and their implementation had to bypass the
designed communication model, as depicted in Figure ?? in
case of the database and the ACP (Analyzer–Collector Pro-
tocol) connections [?]. Thus, implementation of the web
server became ineffective and difficult to maintain.

All the stated shortcomings hinder further development
of the SLAmeter tool and they presented a motivation for
thorough redesign of the web application. Our main objec-
tive was to design and implement an architecture for a new
web application, that will result in its better modularity with
modules of different kind, that will provide interactive data
visualizations and solve the shortcomings of the previous
version. We also intended to integrate some of the modules
present in the previous version of the web interface into the
new.

3. CURRENT TRENDS IN A WEB APPLICATION
DEVELOPMENT

Web applications, i.e. the applications that are acces-
sible through the web [?], are typical representatives of
network-oriented applications. They are built according to
the architectural style called client–server, which is by [?]
the most common hierarchical style in this sort of appli-
cations. As further stated by [?], in this style server pro-
vides services and expects request for these services. Client
that requires particular service sends the requests. It seems,
however, that such strict separation of concerns has been
for long time missing from the web applications, as we de-
scribe below.

3.1. Moving Towards the Thick Client

Originally, World-Wide Web presented a mean of ac-
cessing static, prepared documents, or pages. At that

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

18 The Web Application of the SLAmeter Tool

point, separation of concerns between client and server was
achieved, as client’s requests were denoted only by the URL
of the page and responses of the server were stateless. All
what the client had to do with received page was to display
it. Such architecture is referred to as a thin client architec-
ture [?, ?].

When web servers transitioned from static content to
dynamic, URLs turned into inputs of applications that the
web servers were running. Based on such input web server
have been able to generate document for the client. From
the client’s perspective, though, nothing have changed. In
order to produce per-user specific content, state was in-
cluded in the form of cookies – tokens that could be passed
back and forth between the client and the server to track
the state of the application on the server side. But even
with this "hack", user interaction was restricted to naviga-
tion through hypertext links. Even though this is sufficient
for many (mostly statical, or heavy text-oriented) applica-
tions, no truly interactive application can be created this
way, mainly because of (i) long latency in user interface
reactions due to client–server communication, and (ii) the
need to re-create whole web page on the server and client
side after each received request and response, respectively.

In the context of World-Wide Web, where web browsers
are dominant client applications, inclusion of JavaScript
language brought the desired interactivity [?]. XML-
HttpRequest (XHR) API that was later introduced into the
JavaScript language made possible to move communication
with the server to the background, so that it was no longer
interrupting flow of the user’s activity [?]. A suite of tech-
nologies that could be utilized in conjunction with XHR be-
came known as AJAX and it radically changed the way web
applications were built. However, it also introduced a few
problems with regard to the originally intended separation
of concerns in the client–server architecture.

As a consequence of the partial page updates performed
in the background, a client requires some application logic
that will incorporate updated portions of the interface back
to the displayed page. This is possible either directly with
JavaScript API for manipulating Document Object Model
of the page, or with specialized libraries that greatly sim-
plify such manipulations, e.g., jQuery or Prototype. How-
ever, this divides construction of the pages between the
server and the client. Furthermore, by [?], often it is not
clear which part of the page construction should be im-
plemented where. Situation is further complicated when
we take into account non-HTTP communication with the
server, most notably through bi-directional WebSocket con-
nection for real-time events.

According to [?], solution to these problems lies in
moving all of the presentational logic to the client (web
browser), where it can readily respond to user’s actions,
while data in their structured form can be interchanged be-
tween the two sides of the client–server architecture in the
background. This can be achieved by implementing full
Model–View–Controller framework on the client side – in

other words, creating thick client where all updates to the
user interface are done with JavaScript. The server then be-
comes responsible for providing domain services that are
used by the client. This is similar to Service-Oriented Ar-
chitectural style and therefore is referred to by authors of [?]
as Service-Oriented Front-End Architecture (SOFEA).

Over the last few years, there have been a gradual shift
towards the thick clients in the area of web applications. In-
creasing amount of page content is being retrieved through
AJAX or WebSocket and web servers provide an API for
accessing their content. This fits the service-oriented archi-
tecture concept.

3.2. The Technology

As mentioned above, a thick clients should implement
full MVC architecture to provide separated presentational
layer of a web application. To make development of such
clients more effective, a number of libraries or frameworks
were introduced. Generally, these are based on the men-
tioned three-layer architecture common in user interface de-
sign. However, they differ in ways the MVC is used, as well
as in the scope of the problems they are trying to solve. Ba-
sically, there are three categories into which we can divide
features provided by most of these tools: (i) the view layer
of the application, (ii) the architectural primitives available
to the programmer, and (iii) the way to navigate the appli-
cation.

One of the oldest tools for MVC architecture in the
browser is Backbone3 library that provides basic primitives
to achieve model, view, and controller layer separation in
the application. Most of the work, however, is left to the
programmer. Another popular tool is Knockout4 that fo-
cuses on data binding between model and view through the
intermediary view-model layer. Features are yet again lim-
ited and binding notation in the view is very verbose and
driven by custom HTML attributes. Neither of these pro-
vide direct tools for navigating the web application and are
therefore more suited to enhance pages generated by the
server.

Arguably, the most advanced tools are represented by
AngularJS5 and Ember6 projects. These provide the most
complete features of MVC architecture, but are nonetheless
different in their intended usage. AngularJS is more like a
toolset for building a framework most suited for specific
application development, while Ember strives to provide
ready-to-use solutions to most of the common problems in
the so-called single-page web application development.

AngularJS can manage the whole presentational layer of
the web application, or it can be used to enhance existing,
server-rendered page with advanced interactive features. It
provides templates (views) based on HTML, data bindings
between models and templates, and controllers to drive ap-
plication logic with support for dependency injection. Ap-
plication navigation is possible by third-party extension that
enables switching the current view based on the URL.

3http://www.backbonejs.org
4http://www.knockoutjs.com
5http://angularjs.org
6http://emberjs.com

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 1, 2015 19

On the other side, Ember requires full control of the
page it is used on, which it manages mostly through its
router. The router acts as a state machine that, based on the
current URL, builds a hierarchy of the views, wires them
with the corresponding controllers and manages available
model data. Most of this is build on defined naming con-
ventions at the higher and dependency injection at the lower
layers of the framework. Templating is provided by Han-
dlebars library that adds syntax for dynamic data bindings
and content generation to the HTML language.

4. RELATED WORK

We can find numerous flow data analysis applications
that use web application as their user interface, both com-
mercial and open-source. An overview of such applica-
tions from the network monitoring perspective can be found
in [?]. In this section we focus on the web interfaces and
technologies behind them.

Flow data analysis applications rely heavily on data vi-
sualizations. These have either textual form of tables or
graphical form of various types of charts. Often there is
a way to alter displayed visualizations, either by chang-
ing the visualization form (e.g., from textual to graphi-
cal), or by adjusting data selection used for visualization
(e.g., filtering). In the modern web interfaces this implies
the use of client-side scripting for interactive behavior, at
least for in-background retrieval of pre-rendered content, if
not directly for generating the visualizations from raw data.
Open-source application ntop7 uses jQuery with combina-
tion of additional libraries to create dynamic user interface
with real-time data updates. However, other open-source
tools are lacking in this area: WebView NetFlow Reporter
or Stager renders all parts of their interfaces on the server,
which reduces their interactivity.

On the other side, commercial tools have more ad-
vanced web user interfaces. SolarWinds’ Network Traf-
fic Analyzer uses, similarly to ntop, custom solution built
from smaller libraries to provide dynamic interface. Man-
ageEngine’s NetFlow Analyzer goes all the way to the
thick client and uses Ember framework for fully client-side
driven web interface.

5. ARCHITECTURE OF THE WEB APPLICATION

The existing web application of the SLAmeter tool can
be described as a server-rendered web application with a
thin client as conceptually described in [?]. Although this
application provides partial interactive features, such archi-
tecture is not particularly well suited for dynamic user in-
terfaces. It requires the whole pages to be rendered at once,
which limits interactivity, responsiveness and performance
of data visualizations. In order to increase the performance
and to resolve the detected problems, we introduced some
changes that go with the current trend.

One way to increase performance of web application
with heavy use of the data visualizations is to enable data
updates on the single visualization level. This way, each
module that provides data visualization can be evaluated

independently. If partial page updates through XHR API
was used in the case of our application, most of the data
displayed on the page would be retrieved that way. For that
reason, we will move full presentational layer to the client
and use service-oriented web server. Besides avoiding the
split of the presentation flow, such an architecture can pro-
vide better modularity as well as support for easier inclu-
sion of real-time communication through WebSocket pro-
tocol, that is by [?] well suited for monitoring applications,
because both XHR and WebSocket will transfer only data
that will be subsequently visualized in the web browser.

5.1. Implementation considerations

To enable an effective development of the application,
we decided to use some JavaScript framework. AngularJS
and Ember, were thoroughly explored and tested in order
to select the right one. As a result, Ember was chosen with
regard to:

• the way it allows to define the hierarchical structure
of views;

• a router which helps to manage the application’s
states and transitions between different view hierar-
chies;

• its computed properties and a generally richer API.

On the server side, Django framework was used, as in
the former web application. Though, this time with the
support of the Django REST Framework for creating the
REST web services for the client–server communication.
The Python library gevent-socketio was used for the inte-
gration of the WebSocket communication protocol with the
server.

5.2. The modular architecture

The work on a new web application of the SLAmeter
tool began with the design of the new modular architecture.
This architecture should provide the base for various kinds
of modules that could be easily integrated if provided with
required application interface. For this reason, described
architectures for the web server and the web client, while
influenced by particular used technology, present general
structure, for which the most building blocks are provided
in our implemented framework.

On the server side, the applications with modules were
designed as Django applications that will contain groups of
similar modules. One such application in its general form
with classes is depicted in Figure ??. Rationale behind the
depicted classes is as follows:

• The data connectors retrieve the data from data
sources.

• The modules have responsibility for requesting data
from their respective data sources with the use of the
data connector. This functionality is made available
for the client through either the REST web services or

7http://www.ntop.org

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

20 The Web Application of the SLAmeter Tool

the WebSocket events. Service views are used to pro-
vide additional information about the modules, such
as their name displayed in the user interface or the
used filtering criteria. Thus, the module information
and the data retrieval create required application in-
terface of each module.

• The application groups modules by their type.

• The application router is used to generate regular ex-
pressions for REST service URLs registered with the
application and its modules.

• The serializers are used for transformations between
the internal data structures and the JSON format for
the data interchange with the client.

• The framework consists of abstract or base classes

that provide a basis for the concrete application im-
plementation.

Base building blocks that were implemented are dis-
played as framework classes. In addition to the depicted
elements, the core of the server side, designed to connect
the services of all the applications with the modules, was
implemented.

The architecture of the client side is shown in Figure ??.
This structure is built of the base components providing de-
fault implementation that can be easily extended. It con-
tains routes, that manages views shown on the web page,
with templates and controllers assigned to these views. The
applications, corresponding to those on the server, are fur-
ther split to sections to allow a better organization of the
user interface. The section consists of three panels for dis-

Data Connector
for Source K

Abstract Module

Application

Module N. . .

Abstract Data
Connector

. . .

Data Source 1 Data Source K

service views

framework

data connectors

data sources

serializers

server side of
web application

application

. . .

Base Application
Module

lower parts of
SLAmeter tool

Application Router

Application Service

Base Application
View

Base Module
View

generalization

association

communication
with data source

Base Application

Module Service

Module Serializer

Base Module
Serializer

Base Application
Serializer

modules

Module 1

Data Connector
for Source 1

Application
Serializer

WebSocket

Fig. 4 Class diagram of the general application with the modules on the server.

controllers

views

routes

router

association

composition

dependency
injection

templates

Router

Base SectionBase Section

Section Tools Main Panel Navigation Panel

Base ApplicationBase Application

Base Application

Base Application

Summary panel

Section Tools Summary panel Main Panel Navigation Panel

Module

models

modules

Application
1
0..*

Base Module

1 1
0..*

1

0..* 0..*

Fig. 5 Class diagram of the general application with the modules in the web client.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 1, 2015 21

playing different kinds of modules – summary and navi-
gational modules in the sidebars and larger main modules
for tables and charts in the middle. The models contain
data about modules and applications that are retrieved from
the server through web services. The individual modules
are built of a set of MVC components: (i) one view with
a controller, (ii) the main layout template and (iii) partial
templates for header, toolbar, and main body. These partial
templates are designed to make even extensive adjustments
to the base modules as simple as possible.

The described base MVC components are looked up
during the run-time construction phase in such a way
that allows them to be replaced with specific implemen-
tations. This builds upon Ember naming conventions that
we have extended to support fallback lookup of dependent
JavaScript modules. The lookup begins with the specific
module name, continues to more general versions, and ends
at the default module implementation in case when no other
version is found. This created naming convention for the
JavaScript modules allows the injection of customized im-
plementation at the place where it is needed, while it re-
quires no manual configuration.

5.3. The integration of the modules

With the new design and implementation of the archi-
tecture for the web application, the modules implemented
for the previous version became unusable. Thus, we also
devoted time to the integration of the selected modules into
the new application.

Modules that were integrated are those that provide sta-
tistical and analytical information regarding the network
traffic. Some of the implemented modules are displayed
in Figure ??.

The modules were placed within the first application
with the modules, implementation of which was based on
the architectural design described earlier, while the frame-
work classes were used on the server and the base mod-
ules on the client side. However, since the new architec-
ture provided several features beyond possibilities of the
former one, this did not mean just the re-implementation
of the old code. The most notable new feature was the indi-
vidual module evaluation, which was used to implement a
user-configurable filtering criteria on the module level. Fig-
ure ?? shows the module Bandwidth History with activated
time filtering. It is also possible to filter network traffic on
the basis of the IP addresses and ports, as these represent
filtering capabilities of the Evaluator. Filter parameters can
be specified separately for the source and destination, and
to select all the traffic flowing to and from a specific address
or port, non-directional filtering can be used.

6. DISCUSSION

The main motivations behind this work were (i) to re-
solve issues present in the original version of the web ap-
plication and (ii) to enhance usability of the SLAmeter me-
tering tool. To evaluate the implemented solution, we sub-
jected it to use under laboratory conditions, where the web
application was used by other members of MONICA group

to visualize output of those layers of the SLAmeter tool they
were working on.

From the point of interface responsiveness, users re-
ported the load time was significantly decreased compared
to the original version they were also familiar with. This
can be associated with the used service-oriented architec-
ture with the thick client, where with initial page load the
full interface is retrieved in form of static files (and these
can be subsequently cached by the browser). Next, the
modules begin to evaluate and the retrieved data are imme-
diately displayed. Moreover, the users are informed about
the ongoing evaluations and therefore the web application
seems to be more responsive.

The ability to easily filter the collected data is essential
to the network monitoring tool and this functionality was
finally included. Positively was perceived also possibility
to re-evaluate individual modules.

The better modularization of the architecture con-
tributed to the ability to adapt the deployed SLAmeter tool
to increased load. We could deploy multiple Evaluator in-
stances with intent to distribute the load of the module eval-
uation. By configuring modules on the web server to use
different data sources, which was impossible in original
centralized architecture, we could thus achieve better eval-
uation performance.

In conclusion, although the real-time modules still have
to be implemented, we conducted tests of the client–server
communication through a WebSocket protocol on imple-
mented modules to ensure this feature is also ready when
needed.

7. CONCLUSION AND FUTURE WORK

In this paper we reviewed some current trends in web
applications of the monitoring tools and presented details
regarding the new design and implementation of the modu-
lar web application of the SLAmeter tool.

The intended objective was achieved. The new architec-
ture does not show weaknesses of the previous version. Its
response time was greatly reduced by allowing for evalua-
tion of the modules individually. The better modularization
and separation of the concerns will also help when adding
a new modules to the application. Moreover, WebSocket
support will allow for the implementation of real-time eval-
uating modules. In addition, the selected modules were also
integrated into to the new architecture. These modules ex-
tend the functionality with the support of configurable filter-
ing criteria (these are essential to exploit the potential of the
metering tool). We believe that thanks to those changes the
interface of the SLAmeter can compete with similar tools.

Future work will be aimed at the integration of more
modules, either those that can be migrated from the for-
mer web application, or entirely new ones. Again, with the
new architecture, their functionality of migrated modules
can be expanded significantly. As for the new modules that
will further extend features of the SLAmeter tool, there are
plans for accounting and real-time modules, and also mod-
ules for threat monitoring.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

22 The Web Application of the SLAmeter Tool

Fig. 6 The web application of the SLAmeter tool.

ACKNOWLEDGEMENT

This work was supported by the Slovak Research and
Development Agency under the contract No. APVV-0008-

10 and project KEGA 008TUKE-4/2013: Microlearning
environment for education of information security special-
ists.

REFERENCES

[1] ANTL, M.: Framework for the Evaluator and Web In-
terface of the SLA Meter Tool. Master’s thesis, Tech-
nical University of Košice, Faculty of Electrical Engi-
neering and Informatics (2012)

[2] CHOVANEC, M., CHOVANCOVÁ, E., DUFALA,
M.: Dids based on hybrid detection. In: Proceedings
of the 12th IEEE International Conference on Emerg-
ing eLearning Technologies and Applications. pp. 79–
83. ICETA ’14, IEEE (2014)

[3] CLAISE, B., TRAMMELL, B.: Information model
for ip flow information export (ipfix). RFC 7012
(September 2013)

[4] CLAISE, B., TRAMMELL, B., AITKEN, P.: Speci-
fication of the ip flow information export (ipfix) pro-
tocol for the exchange of flow information. RFC 7011
(September 2013)

[5] DANKOVÁ, E., ÁDÁM, N., JAKUBČO, P.: An
anomaly-based intrusion detection system. In: In Pro-
ceedings of Electrical Engineering and Informatics 2,
(EEI’II). pp. 260–264 (2011)

[6] DONG, S., CHENG, C., ZHOU, Y.: Research on ajax
technology application in web development. In: E -
Business and E -Government (ICEE), 2011 Interna-
tional Conference on. pp. 1–3 (May 2011)

[7] ENNERT, M., CHOVANCOVÁ, E., DUDLÁKOVÁ,
Z.: Testing of ids model using several intrusion detec-

tion tools. Journal of Applied Mathematics and Com-
putational Mechanics 14(1), 55–62 (2015)

[8] FIELDING, R.T.: Architectural Styles and the Design
of Network-based Software Architectures. Ph.D. the-
sis (2000)

[9] FRATERNALI, P., ROSSI, G., SÃĄNCHEZ-
FIGUEROA, F.: Rich internet applications. Internet
Computing, IEEE 14(3), 9–12 (May 2010)

[10] HOFSTEDE, R., CELEDA, P., TRAMMELL, B.,
DRAGO, I., SADRE, R., SPEROTTO, A., PRAS,
A.: Flow monitoring explained: From packet cap-
ture to data analysis with netflow and ipfix. Commu-
nications Surveys Tutorials, IEEE 16(4), 2037–2064
(Fourthquarter 2014)

[11] HUSOVSKÝ, M.: Network Services Usage Account-
ing in th SLAmeter Tool. Bachelor’s thesis, Technical
University of Košice, Faculty of Electrical Engineer-
ing and Informatics (2013)

[12] JAZAYERI, M.: Some trends in web application de-
velopment. In: 29th International Conference on Soft-
ware Engineering: Future of Software Engineering.
pp. 199–213. ICSE:FOSE ’07 (2007)

[13] LEFF, A., RAYFIELD, J.: Web-application develop-
ment using the model/view/controller design pattern.
In: Proceedings of the 5th IEEE International Confer-
ence on Enterprise Distributed Object Computing. pp.
118–127. EDOC ’01, IEEE (2001)

[14] LIGUS, S.: Effective Monitoring and Alerting: For
Web Operations. O’Reilly Media (2012)

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 1, 2015 23

[15] PEKÁR, A., FECIL’AK, P., MICHALKO, M.,
GIERTL, J., RÉVÉS, M.: Slameter – the evalua-
tor of network traffic parameters. In: Proceedings of
the 10th IEEE International Conference on Emerging
eLearning Technologies and Applications. pp. 291–
295. ICETA ’12, IEEE (2012)

[16] PEKÁR, A., RÉVÉS, M., GIERTL, J., FECIL’AK,
P.: Overview and insight into the monica research
group. Central European Journal of Computer Science
2, 331–343 (2012)

[17] PRASAD, G., TANEJA, R., TODANKAR, V.: Life
above the service tier (2007)

[18] PURANIK, D., FEIOCK, D., HILL, J.: Real-time
monitoring using ajax and websockets. In: Engineer-
ing of Computer Based Systems (ECBS), 2013 20th
IEEE International Conference and Workshops on the.
pp. 110–118 (April 2013)

Received November 12, 2014, accepted March 16, 2015

BIOGRAPHIES

Liberios Vokorokos (prof., Ing., PhD.) was born on
the 17. November 1966 in Greece. In 1991 he graduated
(MSc.) with honors at the Department of Computers and
Informatics of the Faculty of Electrical Engineering and
Informatics at the Technical University of Košice. He de-
fended his PhD. in the field of programming device and
systems in 2000; his thesis title was “Diagnosis of com-
pound systems using the Data Flow applications”. He was
appointed professor for Computers Science and Informat-
ics in 2005. Since 1995 he is working as an educationist
at the Department of Computers and Informatics. His sci-
entific research focuses on parallel computers of the Data
Flow type. He also investigates the questions related to

the diagnostics of complex systems. He is the dean of the
Faculty of Electrical Engineering and Informatics of the
Technical University of Košice. His other professional in-
terests include the membership in the Advisory Committee
for Informatization at the faculty and the Advisory Board
for the Development and Informatization at the Technical
University of Košice.

Ján Juhár was born in 1989. In 2014 he graduated (MSc.)
with distinction at the Department of Computers and Infor-
matics of the Faculty of Electrical Engineering and Infor-
matics at the Technical University of Košice. Currently, he
is a PhD student with the focus on software concerns.

Adrián Pekár was born in 1986. In 2011 he graduated
(MSc.) with distinction at the Department of Computers
and Informatics of the Faculty of Electrical Engineering and
Informatics at the Technical University of Košice. Since
2011 his scientific research is focusing on the optimization
of measurement platforms based on the IPFIX protocol. He
defended his PhD in the field of network traffic character-
istics’ measurements and monitoring in 2014. Since that,
his scientific research was extended to also investigate the
questions related to the monitoring and virtualization of
could networks.

Peter Fecil’ak was born in 1983. In 2006 he graduated
(MSc.) at Department of Computers and Informatics at
Faculty of Electrical Engineering and Informatics, Tech-
nical University of Košice. In 2009, he finished his PhD
studies at the same department with the focus on optimiza-
tion of computer networks. Currently, he is working as em-
ployee of DCI, FEI, Technical University of Košice. His
current teaching and research interests are computer net-
works, network monitoring, quality of services and smart
energy systems.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

